Roles of the calcineurin and CaMK signaling pathways in fast-to-slow fiber type transformation of cultured adult mouse skeletal muscle fibers.
نویسندگان
چکیده
Two Ca2+-dependent signaling pathways, mediated by the Ca2+-activated phosphatase calcineurin and by the Ca2+-activated kinase Ca2+/calmodulin-dependent kinase (CaMK), are both believed to function in fast-to-slow skeletal muscle fiber type transformation, but questions about the relative importance of the two pathways still remain. Here, the differential gene expression during fast-to-slow fiber type transformation was studied using cultured adult flexor digitorum brevis (FDB) fibers and a custom minimicroarray system containing 21 fiber type-specific marker genes. After 3 days of culture, unstimulated fibers showed a generally slower gene expression profile; 3 days of electric field stimulation of cultured FDB fibers with a slow fiber-type pattern transformed the fibers to an even slower gene expression profile. Unstimulated FDB fibers overexpressing constitutively active calcineurin featured a slower gene expression profile, except four genes, indicating that transformation occurred, but was incomplete with activation of the calcineurin pathway alone. In both unstimulated FDB fibers and slow-type electrically stimulated FDB fibers, blocking of CaMK pathway with KN93 generated a faster gene expression profile compared with the negative control KN92, indicating that CaMK pathway functions during the transformation induced by both unstimulated culturing and slow fiber-type electrical stimulation. Moreover, neither the calcineurin nor the CaMK pathway alone could maximally activate the transformation, and coordination of the two pathways is required to accomplish a complete fast-to-slow fiber type transformation.
منابع مشابه
A calcineurin-dependent transcriptional pathway controls skeletal muscle fiber type.
Slow- and fast-twitch myofibers of adult skeletal muscles express unique sets of muscle-specific genes, and these distinctive programs of gene expression are controlled by variations in motor neuron activity. It is well established that, as a consequence of more frequent neural stimulation, slow fibers maintain higher levels of intracellular free calcium than fast fibers, but the mechanisms by ...
متن کاملThe calcineurin-NFAT pathway and muscle fiber-type gene expression.
To test for a role of the calcineurin-NFAT (nuclear factor of activated T cells) pathway in the regulation of fiber type-specific gene expression, slow and fast muscle-specific promoters were examined in C2C12 myotubes and in slow and fast muscle in the presence of calcineurin or NFAT2 expression plasmids. Overexpression of active calcineurin in myotubes induced both fast and slow muscle-specif...
متن کاملFrom Slow to Fast: Hypogravity-Induced Remodeling of Muscle Fiber Myosin Phenotype
Skeletal muscle consists of different fiber types arranged in a mosaic pattern. These fiber types are characterized by specific functional properties. Slow-type fibers demonstrate a high level of fatigue resistance and prolonged contraction duration, but decreased maximum contraction force and velocity. Fast-type fibers demonstrate high contraction force and velocity, but profound fatigability....
متن کاملCalcineurin controls nerve activity-dependent specification of slow skeletal muscle fibers but not muscle growth.
Nerve activity can induce long-lasting, transcription-dependent changes in skeletal muscle fibers and thus affect muscle growth and fiber-type specificity. Calcineurin signaling has been implicated in the transcriptional regulation of slow muscle fiber genes in culture, but the functional role of calcineurin in vivo has not been unambiguously demonstrated. Here, we report that the up-regulation...
متن کاملCalsarcin-2 deficiency increases exercise capacity in mice through calcineurin/NFAT activation.
The composition of skeletal muscle, in terms of the relative number of slow- and fast-twitch fibers, is tightly regulated to enable an organism to respond and adapt to changing physical demands. The phosphatase calcineurin and its downstream targets, transcription factors of the nuclear factor of activated T cells (NFAT) family, play a critical role in this process by promoting the formation of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physiological genomics
دوره 30 3 شماره
صفحات -
تاریخ انتشار 2007